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In this work we use ab initio calculations to address the polar behavior of ZnO nanowires. Moving from a
description based on Wannier functions, we employ a computational approach that allows one to express the
polarization of a nanostructure in terms of local contributions. In particular, we discuss the changes in the
nanostructure polarity in terms of two contributions, one related to changes in the equilibrium lattice param-
eters and the other related to surface effects. The former contribution is also interpreted on the basis of
piezoelectric constants. Surprisingly, we find that for the smallest nanostructures, the average dipole is opposite
to that of an infinite bulk structure.
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Understanding how the properties of a material change
when it is reduced to a nanostructure is important for a wide
range of scientific and technological applications as well as
for basic science. Until now the study of confinement effects
has been mostly devoted to describe how the electronic prop-
erties of a material change in terms of band gap,1 optical
properties,2,3 and electronic transport,4 yet the effect of con-
finement on many other physical quantities is totally unex-
plored. In this Rapid Communication, we discuss how polar-
ization changes in nanostructured materials, by employing a
generalization of the local analysis proposed by Wu et al.5

This approach allows one to decompose the intrinsic electro-
static potential of a nanostructure in terms of local dipole
�LD� contributions and to address the mascroscopic polarity
of the system at the same time. We have chosen to focus on
ZnO, which is stable in the wurtzite �hexagonal� structure
�WZ�, is pyroelectric and presents one of the largest piezo-
electric responses. Moreover, the growth of ZnO nanostruc-
tures is one of the most active fields in nanotechnology:6 the
most common structures are nanowires �NWs� grown along

the polar �0001� axis and presenting nonpolar �11̄00� lateral
surfaces.7 ZnO nanostructures have been recently employed
in a wide range of applications, such as piezogenerators,8,9

dye sensitized solar cells,7 and gas sensors.10

We study the polarity of ZnO NWs of different diameters
�see insets in Fig. 1�, starting from a description of the elec-
tronic density in terms of maximally localized Wannier func-
tions �WFs�.11 Our calculations predict that because of the
large lattice relaxation and of charge rearrangements occur-
ring at the NW surfaces, the average dipole of small NWs is
strongly reduced with respect to what one could extrapolate
from bulk behavior. Moreover, at diameters smaller than
�20 Å we find that the surface dipoles counterbalance the
bulk spontaneous polarization field.

According to the modern theory of polarization,12,13 the

macroscopic polarization of a crystal can be defined only
with respect to a reference system and can be written, in
terms of Wannier functions, as

�P = P − Pref =
e

�
�
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where � is the volume of the unit cell, ri
W the WF centers,

and RI the ionic positions. For a periodic structure, �P is

FIG. 1. �Color online� Local dipole analysis in ZnO NWs as a
function of the size �N=shells that constitute the wire�. The black
curve �circles� corresponds to the behavior of several ZnO bulk
system constrained at the lattice parameters c and a� obtained for
the NWs �see Table I�. The solid dark curve is a linear fit of these
data. The red curve �triangles� represents the average LD �D� of the
four NWs considered �shown as insets�. The solid light line �gray�
is a fitting of these data following Eq. �5�. The points at the right of
the graph have been connected with dashed line because they cor-
respond to the smallest diameter �bulkless� NW.
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defined modulo 2eRl /�, with Rl being a direct lattice
vector.14 In the case of a WZ bulk structure, the standard
reference is zinc blende �ZB�, which can be chosen to have
null spontaneous polarization by symmetry.15,16

In order to apply the above approach to structures peri-
odic only in one or two dimensions �e.g., NWs and surfaces�,
one should define a proper normalizing quantity �e.g., a
length or a surface area�. However, this would result in loss
of generality in the comparison between different structures,
with different dimensionalities. We thus use a scheme that
passes through a normalization in terms of number of for-
mula units per supercell �a ZnO pair in the case of zinc-oxide
nanosystems� without loss of generality. In particular, we
take advantage of the WFs approach that allows one to define
local contributions to the average dipole in a system �at the
price of an increased computational load due to the need of
localizing WFs�. In the following we will therefore refer to
�variation of� LD. Focusing on the LDs, one can follow in
principles the transformation of each WFs from the reference
system, and the LD quantum is 2eRl.

The local contributions are calculated by partitioning the
WF set and the ionic charges into neutral units �here Zn-O
pairs�17 in such a way to obtain zero polarization for the
reference bulk ZB phase structure. The total dipole/cell is
obtained as the sum of these local contributions. Such pro-
cedure provides for the WZ phase of ZnO a local dipole of
−0.24 D, which corresponds to a value of spontaneous po-
larization of P0=−0.03 C /m2.18 A similar approach has also
been used in Ref. 19. The proposed scheme allows one to
analyze how polarity varies in different parts of a structure
�e.g., inner vs outer layers�, thereby being able to define bulk
and surface contributions when dealing with nanostructures.
In the following we discuss few applications.

All the calculations were performed using the �ultrasoft�
pseudopotential plane-wave implementation of density-
functional theory �DFT� �Quantum-ESPRESSO code20�.
WFs of the bulk and nanostructured systems were computed
using WANT.21 The generalized gradient approximation
Perdew-Burke-Ernzerhof22 exchange-correlation functional
was adopted.23

Extended surfaces. We have first considered a flat ZnO

�11̄00� nonpolar surface. The bulk polarization is parallel to
the surface plane along the �0001� direction, yet the behavior
may be completely different from what expected, due to sur-
face relaxation. Indeed, this has been recently shown for
�-SiC �Ref. 19� nonpolar surfaces. In our relaxed

1�1-�11̄00� surface, ZnO bonds are shorter than in bulk

�1.87 instead of 2.01 Å� and slightly tilted, with the Zn atom
relaxing inward of about 0.3 Å. This atomic relaxation in-
duces electronic charge density rearrangements characterized
by charge transfer from Zn to the O atom, which ultimately
determines changes in surface dipoles. Such charge transfer
is highlighted by the analysis of the electron density of the
highest occupied �HO� state which evidences a density accu-
mulation on the surface O �see Fig. 2�. These structural and
electronic properties are in good agreement with previous
DFT calculations.24 The LD analysis as a function of the
distance of the ZnO pair from the surface is reported in Fig.
2. The left panel shows that the bulk LD value �−0.24 D
�Ref. 18�� is recovered at the third ZnO bilayer, i.e., beyond
�4–5 Å from the surface. The most remarkable feature is
that the LDs in the last two surface layers are opposite with
respect to the bulk, due to atomic relaxation.

Nanowires. We have then considered ZnO NWs of in-
creasing diameter in the range �4 to 23 Å which are repre-
sented in the insets of Fig. 1. These NWs have hexagonal
shape �being made of N hexagonal shells, N=1, . . . ,4� and

present non polar �11̄00� facets, in agreement with experi-
mental observation.7 Two main relaxation mechanisms oc-
cur: The lattice parameter along the NW axis changes with
respect to the bulk value and the atoms at the NW surfaces

TABLE I. Structural parameters of the relaxed NWs: In the first row N is the number of hexagonal shells
of the NWs, c represents the lattice periodicity along the NW axis, while a� has been obtained by relaxing a
ZnO bulk system with c constrained at equilibrium values for the NWs; d �Å� is the average diameter of the
ZnO NWs.

Bulk NW4 NW3 NW2 NW1

N � 4 3 2 1

d �Å� � 23.0 16.5 9.9 3.8

c �Å� 5.315 5.361 5.385 5.423 5.397

a� �Å� 3.289 3.280 3.276 3.269 3.274

FIG. 2. �Color online� Left side: local dipole analysis in the

direction perpendicular to the �11̄00� surface; each point corre-
sponds to a ZnO layer at increasing distance from the surface. Right

side: ball and sticks rendering of the side view of ZnO �11̄00�
surface; small red/dark gray �big gray� spheres represent oxygen
�zinc� atoms. The isosurface represents the charge density corre-
sponding to the HOMO state of the system.
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relax. The lattice constant c along the NW axis increases
decreasing the NW diameter and, except for the smallest
diameter NW �N=1�, the behavior appears to be linear. The
anomalous behavior of the smallest NW is due to the fact
that this NW has no bulklike ZnO pairs: None of its atoms is
fourfold coordinated. While the NWs elongate along the c
direction,25 the lattice parameters along the perpendicular di-
rections �a=b� shrink, since ZnO has a positive Poisson ratio
��=−�1 /�3� for a strain applied along the c axis. The NW
surfaces present a relaxation mechanism which is very simi-
lar to what observed for extended surfaces. In particular we
find that the ZnO bonds at the surface are about 1.88 Å and
slightly tilted. The charge rearrangement at the NW surfaces
is also consistent with what observed for an infinite �11̄00�
surface: the HO orbital appears to be a surface state charac-
terized by charge accumulation on the surface O atoms.

From the above description of the NW relaxation mecha-
nism, one can anticipate that the change in polar behavior in
a NW can be split into two contributions: �i� relaxation of
lattice parameters, �ii� change in surface dipoles following
atomic relaxation. The first contribution �Fig. 1, circles� can
be estimated by calculating the LD in a strained bulk struc-
ture at the relaxed lattice parameters �c� of the NWs: this
represents the effect of relaxation in the NW core, that leads
to a strong decrease in spontaneous polarization
�P=NPD /�, with NP being the number of LD’s per cell, D
the LD value, and � the volume of the cell�.

The average dipoles of the ZnO NWs that we calculated
in our simulations are indicated by red triangles in Fig. 1.
Since these values were obtained as averages over the whole
nanostructures, they represent the convolution of the two ef-
fects described above: the strained bulk effect, and the sur-
face effects. It is evident that the change in LD of all the
NWs is larger than what can be estimated by considering
only changes in lattice parameters �black circles�. In all cases
the surface relaxation causes a further decrease �in modulus�
of the nanostructure average dipole and can even determine a
sign inversion: the LD component parallel to the NW axis
becomes positive for NWs with diameter smaller than
�20 Å.

The contribution of lattice relaxation to the total polariza-
tion can be described in terms of piezoelectric coefficients.
The LD in the core of the NWs are lower than the equilib-
rium bulk term because, as stated before, while elongating
along the c axis, the bulk structure shrinks in the perpendicu-
lar directions. By using the definition of Poisson ratio and
considering that �1=�2, the change in spontaneous polariza-
tion in a strained bulk is given by

P − P0 = 2e31�1 + e33�3 = �e33 − 2e31���3, �2�

where P0 is the equilibrium structure polarization, e31 and e33
are the piezoelectric constants and �i are the strains along the
three lattice directions. The value of the effective piezoelec-
tric constant �e33−2e31�� from our calculations is
1.29 C /m2. The effective piezoelectric constant is positive
and larger than the bulk value e33 �we get e33=1.04 C /m2,
e31=−0.44 C /m2, while P0=−0.03 C /m2, in agreement
with the values reported in Ref. 26� indicating that the spon-
taneous polarization �and correspondingly the LD� will
strongly decrease in modulus in a relaxed nanostructure. As
said above, the black circles in Fig. 1 represent this behavior
and correspond to the change in LD that a NW would expe-
rience if only bulk contributions would be relevant.

To highlight the role of surfaces, one can perform a LD
analysis in the radial direction of the NWs �see Fig. 3�. The
four sets of data represent the average LD in hexagonal
shells at increasing distance from the NW axis, which is
located at the origin of the plot. The NW cores with
N=1,2 do not present any bulklike ZnO pairs, that instead
appear in the cores of NWs with N=3,4. In all the cases, the
largest changes occur at the surface and subsurface layers:
the qualitative features of the external shells of the three
bigger NWs are similar and resemble that of the infinite

�11̄00� surface �compare with Fig. 2�.
Scaling model. The effects of lattice and surface relax-

ation on the NW polar behavior can be expressed by an
analytical formula that accounts for the surface/volume scal-
ing at varying NW size. We write the average LD as a bulk
contribution, D0�N� �as if all the ZnO pairs would have the
same dipole as in the reference bulk�, plus a surface correc-
tion �DSurf�,

DP�N� = DSurf + NP�N�D0�N� , �3�

where N is the number of shells in the NWs, proportional to
the diameter, and NP�N�=6N2 is the number of ZnO pairs in
the NWs. First we assume that the surface term can be writ-
ten as DSurf�N�=NSurf�N�	S, where 	S is a constant value for
all the wires and NSurf�N�=24�N−1� is the number of pairs in
the two outermost shells �surface�. Second, we assume a lin-
ear scaling of the lattice �piezo� contribution with respect to
1 /N, according to

D0�N� = DB
0 + D1 1

N
, �4�

Using the above expressions to write DP�N� /NP�N� �i.e., the
average LD in the NWs� leads to

D = DB
0 + �D1 + 4	S�

1

N
− 4	S

1

N2 . �5�

FIG. 3. Radial LD analysis in ZnO NWs of increasing diameter:
each point represents the average LD in concentric shells at increas-
ing distance from the NW center located an the zero of the abscissa
axis.
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The linearity of Eq. �4� is well reproduced by our data
�circles in Fig. 1� and the fitting is reported as the dark solid
line in the same figure. The fit for the wires is given by the
light solid line �gray�, which is obtained by Eq. �5� using
DB

0 =−0.239 D, D1=0.373 D, and 	S=0.157 D. The first
two values are taken from the linear fit of Eq. �4�, while the
surface term 	S is directly fitted on the data for the NWs
�triangles�. Since we fixed D0 and D1, this is a one-parameter
fit. Besides defining the scaling law of the average dipole for
NWs, this simple representation allows one to grasp imme-
diately the contribution of the surface in a nanostructure, and
to evaluate the minimal dimensions to recover a bulklike
behavior.

In conclusion, in this work we have shown that the polar-
ization behavior of a material critically depends on the size
extension of the structure considered; for the particular case
of WZ NWs we prove the existence of a minimum diameter
below which the nanostructure polarity is inverted with re-
spect to the bulk one. For ZnO NWs grown along the �0001�
direction we have found that the critical diameter is about

20 Å. We have rationalized our results in terms of two con-
tributions, one due to lattice relaxation occurring in a nano-
structure and the other related to surface effects. The change
in sign of the polarity is mostly determined by the second
effect, which becomes dominant at small diameters because
of the large surface/volume ratio. It is possible that the
present results overestimate the experimental data, that can
be affected by the specific local environment such as inclu-
sion of defects, or saturation of dangling bonds via adsorp-
tion of chemical species.
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